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3 1. Introduction

1 Introduction

The deflection of light by a gravitational field was first predicted by Einstein in 1912, a few years

before the publication of General Relativity in 1916. A massive object that causes a light deflection

behaves like a classical lens. This prediction was confirmed by Sir Arthur Stanley Eddington in 1919.

We’ll now use dimensional analysis to determine the form of the equation describing the deflection

angle due to gravity for a light ray passing by a star (or other objects) of mass m. First, let’s define

the angle θ as the angle between the directions of the ray of light when it is asymptotically far from

the star (coming towards the star and going away from the star), as shown in

r

m
Note that when angles appear in an equation, they should always be expressed in radians. An angle

expressed in radians is dimensionless. Therefore, the deflection angle θ is dimensionless.

On which physical variables might the deflection angle depend? Our physical intuition tells us that

the angle should depend on the mass of the star m and on the distance of the ray of light from the

star. Let’s define r to be the distance of the closest approach of the ray to the star as shown in the

sketch above. If we proceed with our dimensional analysis at this point, we will find that there is no

dimensionally consistent form for the equation expressing θ in terms of m and r, just as we found

that the period of oscillation of a pendulum could not be expressed in terms of m and l alone. So,

again there must be a dimensional constant that we need to include. Since the deflection of light

is due to gravity, we might suspect that the angle depends on the gravitational constant G. What

are the dimensions of G? Recall that the equation for the gravitational force between two massive

objects of mass m1 and m2 a distance r apart is given by F = Gm1m2
r2

. Therefore,

[G] =

[
Fr2

m1m2

]
= M−1L3T−2

where we used [F ] = MLT−2. Now let’s try to find the equation for θ:

θ = kmαrβGγ

The equation relating dimensions is

M0L0T0 = MαLβ(M−1L3T−2)γ

Equating the exponents of the basic dimensions M, L, and T, we get

Exponents of M → 0 = α− γ,

Exponents of L→ 0 = β + 3γ,

Exponents of T → 0 = −2γ.
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But the last equation gives us γ = 0, the second one gives us β = 0 and the first one gives α = 0! So,

we must still be missing a physical variable or a dimensional constant. Which dimensional constant

is most likely to be relevant for the case of the bending of light by gravity? How about the speed

of light, c? Let’s try it:

θ = kmαrβGγcδ

The equation relating dimensions is now

M0L0T0 = MαLβ(M−1L3T−2)γ(LT−1)δ

Equating the exponents of the basic dimensions M , L, and T , we get

Exponents of M → 0 = α− γ,

Exponents of L→ 0 = β + 3γ + δ,

Exponents of T → 0 = −2γ − δ.

So now we have three equations in four unknowns. The four exponents α, β, γ, and δ are constrained

but are not uniquely determined. Each of the three equations involves γ, so let’s express the other

three exponents in terms of γ. From the first equation, α = γ. From the last equation, δ = −2γ.

And from the second equation, β = −δ − 3γ = 2γ − 3γ = −γ. Therefore, the equation for the

bending angle is of the form

θ = kmγr−γGγc−2γ = k

(
mG

rc2

)γ

Actually, there could be more than one term in the equation for θ, each with a different value of

the exponent γ and the constant k, but each term must have the above form. In fact, there could

be an infinite number of terms (an infinite series), in which case the right-hand side might be a

function of mG
rC2 that can be represented as a series expansion. So, we have not uniquely determined

the form of the equation for θ but we can already draw some conclusions from the above equation.

For example, we can see that the bending angle depends on the ratio m/r; if m and r are both

changed by the same factor, the bending angle will be the same.

We can go further and restrict γ by using physical intuition. First, we expect that θ approaches

zero as m becomes very small or as r becomes very large. If γ were negative, then θ would approach

infinity as m became small or r became large. Therefore, γ must be a positive exponent: γ > 0.

To further restrict γ, we can try to apply physical intuition to the derivative of θ with respect to m

or r. Since the ratio m/r appears in the equation for θ, let’s consider the derivative with respect to

x = mG
rc2

:
dθ

dx
= γkxγ−1, γ > 0

Our physical intuition might tell us that in the limit of x = mG
rc2

becoming very small, the change

in θ with respect to a change in m/r should become small, but should not vanish. Therefore, we

want the exponent of mG
rc2

to be zero in the equation for dθ
dx . So γ must equal 1, and the equation

for θ, at least for small values of the dimensionless combination of variables mG
rc2

, is

θ = k
mG

rc2
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I admit that this last argument is a bit of a stretch...

What about the dimensionless constant k? A survey of all the equations that you will learn in

the Introductory Physics sequence will convince you that the dimensionless constants in physical

equations are always of order 1. And the equation we just derived is no exception. It turns out that

θ = kmG
rc2

with k = 4.

2 Gravitational Focusing

In most derivation, we accounted only for physical collisions, ignoring the fact that particles can also

“collide” gravitationally. That is, their trajectories can be significantly deflected by gravitational

attraction, approximating a physical collision. This is called gravitational focusing. Here we will

derive a cross-section that accounts for this effect.

a. Consider two identical particles (labeled 1 and 2) of mass M and radius R. 1 passes by 2

with impact parameter b and velocity v0. Estimate the change in velocity, ∆v, of 1 as it is

deflected from its original trajectory due to the gravitational pull of 2.

Assuming that the effect on the trajectory of particle 1 occurs at a distance of 2b, which

should be familiar, we have a time of action given by

∆t =
2b

v0

where we have simply used dimensional analysis or the fact that velocity is the distance

over time. The acceleration during this time interval is approximately constant with a

value of

a =
GM

b2

so that the change in velocity is given by

∆v = a∆t

∆v =
2GM

bv0

We can consider the time of interaction to be ∆t = 2b/c where we’ve made an OOM

assumption about how close the particle must be to really feel the defection due to gravity.

Therefore, the change in its velocity is given by

∆v =
2GM

bc

b. Gravitational focusing becomes significant when the change in velocity is on order-of-magnitude

equal to the initial velocity (i.e. effect on order unity, ∆v ≈ v0). How large does the impact

parameter b need to be for this to occur?

∆v = v0
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2GM

bv0
= v0 =⇒ b =

2GM

v20

Note. It is sometimes stated that the deflection of light by gravity was first predicted

with general relativity. This is something of an oversimplification. In Newtonian theory,

you could imagine light as made of particles that traveled at the speed c, and such particles

would feel gravity just like anything else. If they passed at an impact parameter b from

a point mass M, they would experience a total deflection angle in radians of

The defection angle, with trig and a small angle approximation, is α = v/c, we have

α =
2GM

bc2

Using full general relativity, we’d arrive at a similar answer off by a factor of 2,

α =
4GM

bc2
(1)

Bending of Light by the Sun

Before we calculate the angle by which light is bent when passing close to the sun, let’s review

the historical significance of this phenomenon. One of the first tests of Einstein’s theory of general

relativity was a measurement of the bending of starlight as it passed by the edge of the sun. The

difficulty with this measurement is that it is normally impossible to see a star when it is in line

with the edge of the sun. It was necessary to wait for a solar eclipse so that the measurement could

be made since we can see the stars during a solar eclipse! After Einstein first presented his ideas

on light deflection, an expedition to the location of the next solar eclipse was prevented by war. A

few years later, in 1919, another total solar eclipse occurred and his theory was tested and verified.

Now let’s calculate the bending angle. For a light ray passing near the edge of the sun, r⊙ is the

radius of the sun (r⊙ = 6.96× 108 m) and m⊙ is the mass of the sun (m⊙ = 1.99× 1030 kg). The

bending angle is

α =
4mG

rc2

=
4× 1.99× 1030 × 6.67× 10−11 m3/(kg · s2)

6.96× 108 m× (3.0× 108 m/s)2

= 8.5× 10−6 radians

= 8.5 microradians

We can convert this into degrees by multiplying by 180◦/π to get β = 0.0005◦ or 5/10,000 of a

degree. To get a sense of the size of this angle, let’s compare it to the angular diameter of the sun

∆θ⊙:

∆θ⊙ =
diameter of the sun

distance from earth to sun

=
2× 6.96× 108 m

1.49× 1011 m

= 0.0093 radians× 180◦

π
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= 0.54◦

Therefore, the angular diameter of the sun is about half a degree. So the angular shift of the starlight

passing near the sun’s edge is about 1/1000 of the angular diameter of the sun itself. This shift

would certainly not be apparent to the naked eye. Precise measurements of images in a telescope

are required to measure this shift relative to the angular position of other stars.

3 Gravitational Lensing

Gravitational lensing is a consequence of one of the most famous predictions of Einstein’s General

Relativity—the idea that light is bent in a gravitational field. Indeed, the first calculation show-

ing that gravitational bending of starlight could act as a lens was produced by Einstein himself,

although he did somewhat pessimistically conclude that “there is no great chance of observing this

phenomenon”. The first gravitationally lensed quasar, Q0957+561, was discovered by Walsh et al.

in 1979.

There are three main forms of gravitational lensing:

1. In strong lensing, the lens is a large mass, the geometry is favorable, and the deflection is

comparatively large. The observer sees two or more separate images of the source.

2. In weak lensing, the lens is a large mass, but the geometry is less favorable. The image of the

source is mildly distorted, with a tendency to smear into an arc centered on the lens center:

an effect known as shear. This means that the alignment of the background objects appears

non-random, so shear can be measured statistically even if the distortions of individual objects

are too small to be identified directly
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3. In microlensing, the lens is a small mass (usually a star), so that although the geometry is

extremely favorable—source, lens, and observer in a straight line—the deflection, distortion,

and multiple images caused by lensing cannot be resolved. Instead, the image of the source

appears to brighten for the duration of the lensing event (since the source, lens, and observer

all have relatively proper motions, the alignment that creates the microlens is temporary).

Microlensing has been used to search for astrophysical dark objects—MACHOs—in the Galactic

halo. Strong and weak lensing can be used to map the mass distributions of clusters of galaxies;

over larger areas weak lensing can also map large-scale structures.

It may help to draw a diagram (in fact, it’s probably necessary). Let’s start with the simplest form

of the lensing effect:

The Einstein ring is the simplest and most symmetrical effect of gravitational lens, generated when

the source, the lens, and the observer are perfectly aligned. As its name suggests, the Einstein ring

corresponds to the situation where the observer detects the light deviated by the lens as if it were a

circumference or ring. Figure 1 illustrates this situation, where the Einstein ring is represented by a

dashed yellow line circumference, centered on the source and being looked at from the side. It can

be observed that the rays of light that travel directly to the observer (continuous red lines) subtend

an angle θE , known as Einstein angle. Which is the characteristic magnitude of the Einstein ring. It

also can be appreciated the deviation angle α calculated in the previous section. Again, this angle

is very accentuated in the figure, because, in practice, α and θE are on the order of microseconds

of arc.

Figure 1: A source, a lens and an observer are perfectly aligned, which creates an Einstein ring.

The drawing simplifies the phenomenon by showing only two of the light rays that form the ring

(continuous red lines), that subtend an Einstein angle θE .

Figure 2 shows a version of Figure 1 which is more useful to calculate θE . Here are shown the

distance between the source and the lens, dLS , the distance between the lens and the observer, dL,
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the distance between the source and the observer, dS , and the angle β between the undisturbed ray

of light and the straight line between the source and the lens. To calculate θE , let us note that by

the exterior angle theorem we must have that:

α = θE + β (2)

If M is the mass of the lens, combining equations (1) and (2) we get:

α =
4GM

c2b
= θE + β (3)

Because α and θE are so small, when expressing them in radians we can use the approximations:

Figure 2: Reduced version of the Figure 1, where we show Einstein angle, θE , the distance between

the source and the lens, dLS , the distance between the lens and the observer, dL, the distance

between the source and the observer, dS , and the angle β between the undisturbed ray of light and

the straight line between the source and the lens.

θE ≈ tan θE =
b

dL
, β ≈ tanβ =

b

dLS

Introducing these expressions into equation 3

4GM

cb2
=

b

dL
+

b

dLS

Solving for b:

b =

(
4GM

c2
dLdLS
dL + dLS

)1/2

=

(
4GM

c2
dLdLS
dS

)1/2

To express this result in rad, we divide member for member by the distance between the observer

and the lens, obtaining the Einstein angle:

θE =
b

dL
=

(
4GM

c2
dLS
dLdS

)1/2

Physical size of the Einstein radius,

rE = θE ·DL
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Now MORE complicated geometry! FROM IOAA 2007

Figure 3: Geometric Model of Gravitational Lensing

β = true angle between the lens and source

θ = observed angle between the lens and source.

ξ = distance from the lens to a passing light ray

ϕ = the Einstein angle of deflection

The above variables are vectors – angles can have positive or negative values and direction In

complex systems (i.e., systems with several galaxies/clusters along the line-of-sight) the deflection

angles must be added vectorially.

Now,

SA ≈ PL = DS −DL

PS1 = PS + SS1

=⇒ DSθ = DSβ + (SA) · ϕ
= DSβ + (DS −DL) · ϕ

θ = β +
DS −DL

DS
· ϕ

ϕ =
4GM

ξc2

From Newtonian gravity, a photon moving past a mass, M , with an impact parameter, ξ

will undergo an acceleration perpendicular to the direction of its motion. Under the Born

approximation,
dv⊥
dt

=
GM

r2
sin θ
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where:

• r =
√
x2 + ξ2 (distance from the mass M to the photon),

• θ is the angle between the photon’s position vector and the direction of motion (x-axis),

• sin θ = ξ
r .

Substituting sin θ, we get:

dv⊥
dt

=
GM

r2
· ξ
r
=

GMξ

(x2 + ξ2)3/2
.

Since the photon moves at speed c, we write dt = dx
c . Thus:

dv⊥ =
GMξ

(x2 + ξ2)3/2
· dx
c
.

To find the total perpendicular velocity, we integrate from x = −∞ to

x = ∞:

v⊥ =
GMξ

c

∫ ∞

−∞

dx

(x2 + ξ2)3/2
.

The integral is standard and can be evaluated using a

trigonometric substitution:

Let x = ξ tanϕ, then:

- dx = ξ sec2 ϕdϕ,

- x2 + ξ2 = ξ2 sec2 ϕ,

- When x→ ±∞, ϕ→ ±π/2.
Substituting, we get:∫ ∞

−∞

dx

(x2 + ξ2)3/2
=

∫ π/2

−π/2

ξ sec2 ϕdϕ

(ξ2 sec2 ϕ)3/2
=

1

ξ2

∫ π/2

−π/2
cosϕdϕ.

The integral of cosϕ from −π/2 to π/2 is:∫ π/2

−π/2
cosϕdϕ = sinϕ

∣∣∣π/2
−π/2

= 1− (−1) = 2.

Thus: ∫ ∞

−∞

dx

(x2 + ξ2)3/2
=

2

ξ2
.

Substituting back:

v⊥ =
GMξ

c
· 2

ξ2
=

2GM

ξc
.

So the Newtonian deflection is

ϕ =
v⊥
c

=
2GM

ξc2
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But Einstein showed that when you consider space-time together, the Einstein angle is twice

that found in Newtonian physics

ϕ =
v⊥
c

=
4GM

ξc2

Note that x is much smaller than the distance to the source or the lens. Hence one generally

makes a “thin lens” approximation and assumes that the entire deflection occurs instantaneously.

One never models 3-D mass distributions; 2-D models will do.

Now,

=⇒ θ − β =
DS −DL

DS
· 4GM
ξc2

θ − β =
DS −DL

DS
· 4GM

DLθ · c2

θ2 − βθ =
DS −DL

DSDL
· 4GM

c2
(4)

In figure 3, for an isolated point source S, there will be two images (S1 and S2) formed by the

gravitational lens. For a perfect alignment in which β = 0, we have θ = ±θE , where

θE =

√
4GM

c2
(DL −DS)

DSDL
(5)

Here, we need to define a few things for simplification. We define a distance

D ≡ DL−S

DLDS

and an Einstein ring radius

θE =

(
4GM

Dc2

)1/2
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3.1 Problem 1:

The gravitational lens is one of the confirmations of Einstein’s General Theory of Relativity (TRU),

which explains the relationship between the curvature of space-time and mass. The existence of

mass between the observer and the light source will cause the curvature of space-time, then the

curvature makes the photon trajectory from the background light source can be focused to the

observer.

As an illustration, see the image below, which is a geometric scheme of the formation of the

gravitational lens phenomenon. DL, DS , and DLS , respectively, are the distances from the observer

to the lens, the observer to the source, and the lens to the source. In addition, the angles measured

from the line of sight are defined, namely the line connecting the observer to the center of the lens

forward to the source plane, β the angular position of the unlensed source, θ the angular position

of the formed image, α the deflection angle, and α̂ is the reduced deflection angle.

a. Given the reduced deflection angle of the TRU is

α̂ =
4GML

c2ξ

with G the gravitational constant, c the speed of light, ML the mass of the lens object, and

ξ the impact parameter, derive the gravitational lens equation in the form of a relationship

between β as a function of θ (the observed angle) using the geometric relationship illustrated

by the figure above!

b. Assuming that a dwarf star of mass 0.5M⊙ located at a distance of 5.8 kpc from an observer

on Earth has lensed a background star around the center of the Milky Way galaxy. Calculate

the angular radius formed when the background star is exactly in the line of sight (called the

Einstein radius)! Express it in milliarcseconds!

c. Can the angular size obtained from question 8b be observed using the Hubble Space Telescope

(HST) with an angular resolution of 0.03 arcseconds?
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Please note that the image provided is not to scale. The first key to answering this question

is to realize that the angles given in the sketch (θ, α, β, α̂) are very small angles, because

the distances (DL, DS , DLS) depicted are actually very large distances (cosmological scale;

distances between galaxies).

Since the angle is very small, we can use the small angle approximation, sin θ ≈ tan θ ≈ θrad,

so if we use radians we can write,

ξ = θ ·DL

OS = β ·DS

SS′ = α̂ ·DLS

SS′ = α ·DS

and we also have connection,

DS = DL +DLS

OS′ = OS + SS′

θ = β + α

a. We can derive β as a function of θ

β = θ − α

β = θ − SS′

DS

β = θ − α̂ ·DLS

DS

β = θ − DLS

DS

4GML

c2ξ

β = θ − DLS

DS

4GML

c2 · θ ·DL

β = θ − DLS

DS ·DL

4GML

c2θ
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b. We have derived β(θ) in the previous problem, so for the case where the source is directly

behind the lens, β = 0, we can derive a formula called the Einstein radius/Einstein ring,

θ =
DLS

DS ·DL

4GML

c2θ

θ2 =
DLS

DS ·DL

4GML

c2

θE =

√
DLS

DS ·DL

4GML

c2

For a lens with mass ML = 0.5M⊙, lens distance DL = 5.8 kpc, source distance (distance

from the center of the galaxy)DS = 8 kpc, and lens-to-source distanceDLS = 8−5.8 = 2.2

kpc, we can calculate the Einstein radius,

θE = 2.13× 10−9 rad = 0.44 milliarcseconds.

c. The Einstein radius of the object (0.44 mas) is much smaller than the angular resolution

of the HST (30 mas), so it cannot be separated.
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3.2 Problem 2: Microlensing

Note. Originally conceived as a way to discoverMassive Compact Halo Objects (MACHOS) if stellar-

mass black holes or other massive dark objects comprise the dark matter in galaxies, microlensing

is so named because of the small size of the resulting Einstein rings. Such microlensing of back-

ground stars is detected in wide-area, high-cadence surveys toward the bulge of the Galaxy and

the Magellanic Clouds, but it is inferred that the lensing object is also a normal star (or a brown

dwarf). Because of the relative motion between the lens and the source, a microlensing event has a

characteristic and symmetric curve of magnification that is easy to recognize and discriminate from

those of other (intrinsic) variable stars.

The MACHO project imaged stars in the Large Magellanic Cloud looking for evidence of microlens-

ing from MACHOs in the Milky Way. The MACHO project lasted for ttot = 6 years and they

re-imaged the same areas of sky about once every ∆t = 2 days on average. The MACHO project

did not find any MACHOs. Over what mass range did they exclude the possibility of MACHOs?

Assume that each MACHO is DMACHO = 20 kpc from us. Assume that every star in the LMC is

D∗ = 50 kpc away and has a relative velocity of vrel = 50 km/s.

[Hint: compare the microlensing timescale to the length of the MACHO project and the length over

which MACHO returned to the same area of sky.]

The MACHO project could have only found MACHOs with microlensing timescales between

∆t and ttot: any shorter and they would have happened too quickly to be seen; any longer

and they wouldn’t have noticed an increase in flux. So now we need to calculate the masses

corresponding to these microlensing timescales.

The microlensing timescale ∆t is the time that it takes the lens to move by an Einstein radius:

∆t =
θEDL

vrel

where DL is the distance to the lens and vrel is the relative velocity of the background star to

the lens. Using the definition of the Einstein radius we can rewrite the microlensing timescale

in terms of the mass:

∆t =

√
4GM

c2D

Dmacho

vrel

D =
DmachoDast

Dmacho −Dast

where I have plugged in the distance to the MACHO as the lens distance and the distance to

the background star as the source distance, respectively. Solving for the mass gives

M =
∆t2v2rel
D2

macho

c2D

4G

Plugging in ∆t, I find the minimum mass to be 3×10−5M⊙; plugging in ttot, I find a maximum

mass of 40M⊙. This means that the MACHO survey excluded dark matter particle masses

between 3 × 10−5M⊙ and 40M⊙. This is interesting because there aren’t any other strong

constraints on the masses of dark matter particles until they exceed 103M⊙.
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This has led people to propose that dark matter may be composed of primordial black holes

in the mass range 40 < M < 103M⊙ (although other ideas for the origin of dark matter are

much more popular).

From the equations (4) and (5) above we arrive at LENS equation,

θ2 − β − θ2E = 0

=⇒ θ1,2 =
β ±

√
β2 + 4θ2E

2
(6)

θ1 =
β

2
+

√(
β

2

)2

+ θ2E

θ2 =
β

2
−

√(
β

2

)2

+ θ2E

This corresponds to one image above the source (positive root) and one below (negative root). In

general, no matter the complexity, there are always an even number of images for a non-transparent

lens, and an odd-number for a transparent lens. It may help to be familiar with some of the limiting

cases:

• β = 0: We have θ = θE . Therefore, we see a full Einstein ring centered on the lensing object.

• β ≪ θE : In this case, we see two images. They lie on a line that runs vertically perpendicular

to our line of sight. One image is just above (outside of) the (unlit) Einstein ring, the

other is just inside of the ring but below the source. Mathematically, θ1 ≈ θE + β/2 and

θ2 ≈ −θE + β/2.

• β = θE : In this case, θ1 ≈ 3θE/2 and θ2 ≈ −θE/2. This means there are again two images,

one above and one below the source, with the one above outside of the ring and the one below

inside of it.

• β ≫ θE : Lensing is insignificant. For strong lensing, β must be less than or comparable to

θE .

Let us introduce, “impact parameter”, the angular separation between lens and source in units of

the Einstein radius: η =
β

θE
. In Fig 3, PS ≡ η. Dividing the above equation (6) by β

θ1,2 =
β

2
±

√(
β

2

)2

+ θ2E

θ1,2
β

=
1

2
±

√(
1

2

)2

+

(
θE
β

)2

θ1,2
β

=
1

2
±
√

1

4
+

1

η2

=
1

2

(
1±

√
η2 + 4

η

)
Again,

θ2 − βθ − θ2E = 0
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(θ +∆θ)2 − (β +∆β)(θ +∆θ)− θ2E = 0

(θ2 − βθ − θ2E) + 2θ∆θ − β∆θ − θ∆β = 0

(2θ − β)∆θ − θ∆β = 0

Thus, we get,

∆θ

∆β
=

θ

2θ − β[
∆θ

∆β

]
θ=θ1,2

=
θ1,2

2θ1,2 − β

=
θ1,2/β

2θ1,2/β − 1

=

1
2

(
1± η2+4

η

)
1− 1

2

(
1± η2+4

η

)
= 2

(
1

2

(
1± η2 + 4

η

)
− 1

)
=

η ±
√
η2 + 4

2(η ±
√
η2 + 4− η)

=
1

2

(
1± η√

η2 + 4

)

Simply differentiating,
dθ1,2
dβ

=
1

2
± 1

2
√
1 + 4

η2

The magnification of an image is defined by the ratio between the solid angles of the image and the

source, since the surface brightness is conserved.

lensing magnification, M =
Angular size of the image

Angular size of the source

The relationship between θ and β implies that one image of the lens must be magnified. Consider

how the angles map:
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Each point within the source is lensed by the foreground lens L (marked), and the images marked

I+ and I− are what are actually observed. The total factor of brightening is therefore equal to:

M =
A+ +A−

As

Without the lens, photons would fall within an area dA = β∆ϑ∆β. With the lens, these same

photons fall within an area dA′ = θ∆ϑ∆θ. So the light is “focused” from area dA to area dA′, and

the ratio of these two areas is simply

M =
dA′

dA
=

∣∣∣∣ θ∆ϑ∆θβ∆ϑ∆β

∣∣∣∣ = ∣∣∣∣ θ∆θβ∆β

∣∣∣∣ = ∣∣∣∣ θ dθβ dβ

∣∣∣∣
For a circularly symmetric lens,

M1,2 =
θ1,2
β

· dθ1,2
dβ

=
1

2

(
1±

√
η2 + 4

η

)
×

1

2
± 1

2
√

1 + 4
η2


=

1

2
±

√
1 + 4

η2

2

×

1

2
± 1

2
√

1 + 4
η2


=

η2 + 2

2η
√
η2 + 4

± 1

2

The magnification of one image (the one inside the Einstein radius) is negative. This means it has

negative parity: it is mirror-inverted. The sum of the absolute values of the two image magnifications

is the measurable total magnification:

M = |M1|+ |M2| =
η2 + 2

η
√
η2 + 4

Note that this value is (always) larger than one! The difference between the two image magnifications

are unity:

M+ −M− = 1

Note. Because each problem and diagram addresses different notations and I am too lazy to

unify all the notations, you may encounter different notations for the same thing in this lecture.

1. Normalized source position,

η =
β

θE

2. Normalized image position,

u± =
θ±
θE

u± =
η ±

√
η2 + 4

2
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3.3 Problem 3: Magnification Factors in Gravitational Lensing

Figure 4: Gravitational lensing. Deviations from perfectly circular arcs are due solely to the

instructor’s ineptitude with Keynote.

Figure 4 was sketched in class. The figure shows a source lensed by a mass M . The source is in the

shape of a thin circular arc of (angular) radius θs and radial width dθs ≪ θs.

The observer does not see the source, but sees instead its two lensed images, located above and

below the source. Each lensed image, like the parent source, is also a thin circular arc. Image1 has

radius θ1 and radial width dθ1, and Image2 has radius θ2 and radial width dθ2.

Note that each point {a, b, c, d} on the source maps to a corresponding point on image1 {a′, b′, c′, d′}
and image2 {a′′, b′′, c′′, d′′}.

This problem works out the area of image1, A1, and its relation to the source area, As —and

likewise for image2. The total area of the two images, A1 +A2, divided by the area of the source,

As, gives the total magnification M as a function of θs (how displaced the source is relative to the

lens).
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M =
A1 +A2

As

Please recall that the Einstein ring is NOT actually illuminated unless θs = 0 (the source is directly

behind the lens). Nevertheless, we can always draw the location of the Einstein ring for reference,

and this is done in Figure 4 — see the dashed circle. For this entire problem, treat θE > 0,

the angular radius of the Einstein ring, as a given known quantity.

(a) Consider image1. It is magnified azimuthally compared to the source by a factor Maz,1. In

other words, the arclength b′–d′ is larger than the arclength b− d by a factor Maz,1 (the same

magnification factor relates arclengths a′–c′ and a− c).

Write down Maz,1 in terms of θ1 and θs.

b− d = θs · ϕc
b′ − d′ = θ1 · ϕc

Azimuthal magnification,

Maz,1 =
b′ − d′

b− d
=
θ1 · ϕc
θs · ϕc

Maz,1 =
θ1
θs

(b) Rewrite the lens equation (derived previously)

θ2 − θsθ − θ2E = 0 (7)

as

θs = θ −
θ2E
θ

(8)

Here θ can refer either to θ1 or θ2.

Combine 7 with 8 to write down Maz,1 in terms of θ1 and θE .

Maz,1 =
θ1
θs

=
θ1

θ1 −
θ2E
θ1

[∵ θ can be θ1, θ2]

=
θ21

θ21 − θ2E

(c) Now consider the radial magnification of image1. The radial segment a′–b′ is larger (or possi-

bly smaller — you will find out) than the radial segment a–b by a factor Mrad,1.

Write down Mrad,1 in terms of dθ1 and dθs. Then take the derivative of the rewritten lens

equation (8) to solve for Mrad,1 in terms of θ1 and θE.
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a′ − b′ = dθ1 and a− b = dθs

∴ Mrad,1 =
a′ − b′

a− b
=
dθ1
dθs

From equation (8): θs = θ1 −
θ2E
θ1
. Now differentiating,

=⇒ dθs
dθ1

=
d

dθ1

(
θ1 −

θ2E
θ1

)
=

d

dθ1
θ1 −

d

dθ1

(
θ2E
θ1

)
= 1 + θ2E · d

dθ1

(
θ−1
1

)
= 1− θ2E · (−θ−2

1 )

= 1−
(
−
θ2E
θ21

)
= 1 +

θ2E
θ21

Now,

dθ1
dθs

=
1

dθs/dθ1
=

1

1 +
θ2E
θ21

=
θ21

θ21 + θ2E

Mrad,1 =
θ21

θ21 + θ2E

(d) The total magnification M = Maz,1 · Mrad,1. Show that

M1 =

(
1−

θ4E
θ41

)−1

(9)

Having shown this is true for M1, simply replace subscript 1 with subscript 2 to

write down the analogous expression for M2.

M = Maz,1 · Mrad,1

=

(
θ21

θ21 − θ2E

)
·
(

θ21
θ21 + θ2E

)
=

θ41
θ41 − θ4E

=

(
θ41 − θ4E
θ41

)−1
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M1,2 =

(
1−

θ4E
θ41,2

)−1

(e) Solve the original lens equation (7) for θ1 and θ2 in terms of θE and θS . Prove that θ1 ≥ θE
(image1 is always located outside the Einstein ring) and θ > θ2 ≥ −θE (image2 is always

located inside the Einstein ring). Thereby also show that M1 ≥ 1 (image1 is always

magnified).

(Note that θ2 < 0 and M2 < 0 which simply means that image2 is flipped relative to the

source; see Figure 4. If you get the right answers for M2 and θ2, you should find that |M2|
can be > 1 or < 1 — i.e., image2 can either be magnified or de-magnified depending on θs.

But you don’t have to show this.)

From 7 we can solve quadratic equation, ax2 + bx+ c = 0 to find the roots,

a = 1

b = −θs
c = −θ2E

=⇒ x =
−b±

√
b2 − 4ac

2a

x ≡ θ =
θs ±

√
θ2s + 4θ2E

2

∴ θ1 =
θs +

√
θ2s + 4θ2E

2

θ1 will be minimum when θs = 0; the source is directly behind the lens.

∴ θ1,min =

√
4θ2E

2
= θE

θ1 ≥ θE

Similarly, the minimum value of θ2 is at θs = 0

∴ θ2,min = −

√
4θ2E

2
= −θE

As the minimum values is negative, the maximum value will be 0,

0 > θ2 ≥ −θE

Now,

M1 =

(
1−

θ4E
θ41

)−1

, as θ1 ≥ θE

0 ≤ 1−
θ4E
θ41

≤ 1
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(
1−

θ4E
θ41

)−1

≥ 1

∴ M1 ≥ 1

(f) By factoring (9) (it is the difference of two perfect squares), and combining with the original

lens equation (7) divided by θ2, rewrite M1 as

M1 =

(
θ1
θS

)2(
2
θ1
θS

− 1

)−1

Also, write down the analogous expression for M2 by simply swapping out sub-script 1 for

subscript 2.

Again from magnification,

M1 =

[
1−

(
θ2E
θ21

)2
]−1

=

[(
1 +

θ2E
θ21

)(
1−

θ2E
θ21

)]−1

The original lens equation,

θ2 − θsθ − θ2E = 0

1− θs
θ1

−
θ2E
θ21

= 0

θ2E
θ21

= 1− θs
θ1

(10)

Substituting the value of Eq. 10 into magnification equation,

M1 =

[(
1 + 1− θs

θ1

)(
1− 1 +

θs
θ1

)]−1

=

[(
2− θs

θ1

)(
θs
θ1

)]−1

=

[(
2θ1 − θs
θ1

)(
θs
θ1

)]−1

=

[
2θ1θs − θ2s

θ21

]−1

=

θ2s
(
2θ1
θs

− 1
)

θ21

−1

So we arrive at,

M1,2 =

(
θ1,2
θS

)2(
2
θ1,2
θS

− 1

)−1
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(g) Define u ≡ θs/θE . Rewrite your answer for θ1 and θ2 in (e) to find that

θ1,2
θs

=
1

2

(
1±

√
u2 + 4

u

)

(h) Combine (f) and (g) to find

M1,2 =
1

2
± u2 + 2

2u
√
u2 + 4

(i) Use (h) to solve for the TOTAL magnification:

M = M1 + |M2| =
u2 + 2

u
√
u2 + 4

Note. Previously derived in this note!

Note the absolute value of M2 — see the parenthetical remark under part (e) above.

Plot M as function of u between u = 0 and u = ∞, and annotate on your plot the

precise values of M for u = 0.1 and u = 1.

https://cosmo.nyu.edu/blanton/astrophysics/ps11.pdf

https://cosmo.nyu.edu/blanton/astrophysics/ans11.pdf

https://cosmo.nyu.edu/blanton/astrophysics/ps11.pdf
https://cosmo.nyu.edu/blanton/astrophysics/ans11.pdf
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4 Gravitational Lensing Brazil Problem

(50 points) Gravitational lensing is a phenomenon in which light from a distant source can be

deflected by the curvature of spacetime caused by a very massive object, such as a black hole or

another compact object along the line of sight between an observer and a distant object. This was

first observed during the 1919 solar eclipse in Sobral, Ceará, and on the island of Pŕıncipe, São Tomé

and Pŕıncipe, where the observed positions of stars behind the Sun differed from their astrometric

positions, following Einstein’s earlier predictions.

At the time of the eclipse, the deflection of light was also predicted using Newtonian mechanics.

(a) (12 points) Using only Newtonian mechanics, show that the deflection of light can be, with

good approximation, given by

θN =
2GM

rc2
,

where r is the closest distance between the lensing object, with mass M , and the apparent

path of the light, with θ in radians. In this case, the observer and source are not near the

massive object.

In the case where the observer, massive object, and source are aligned, the light from the

source is deflected, according to general relativity, by an angle (in radians) given by

α =
4GM

rEc2

where r is now called the Einstein radius (rE) and has the same previous meaning.

(b) (6 points) Draw a diagram to describe the physical scenario of an ideal lens system (observer,

lens, and source in a straight line). Draw the light path and mark the quantities α and rE .

Also, mark the Einstein angular radius θE (the angular deflection of the source image as seen

from Earth), the distance to the lens DO, and the distance to the source DF , measured from

Earth.

(c) (6 points) Sketch the image of the source (for example, a star) as seen by an observer on

Earth when the source, lensing object, and observer are aligned.

(d) (6 points) Sketch the image of the source (for example, a star) as seen by an observer on

Earth in the non-ideal case where the source, lensing object, and observer are not perfectly

aligned. Draw a diagram of the system as done in part (b).

Gravitational lensing has been proposed as a method for detecting massive compact halo

objects (MACHOs) in our galaxy, which may be a candidate for dark matter. These objects

are often dark stellar remnants, such as neutron stars and black holes. As MACHOs and stars

orbit the galaxy, there is a chance that a lensing event will occur when a black hole or neutron

star passes in front of a background star.

(e) (12 points) In the case where the source, lens, and observer are aligned, given a measurement

of α and rE , calculate the Schwarzschild radius of the lensing object in terms of θE , DO, and

DF , assuming the lensing object has a mass of the order of a few solar masses, DO and DF

are of the order of 1018 meters, and DF is greater than DO.

(f) (8 points) Suppose we have an event in which a lensing object of 3.0M⊙ and 2.6 × 1018

meters away from Earth passes in front of a star at a distance of 9.2 × 1018 meters. This

occurs in such a way that the ideal configuration takes place. What is the Einstein angular

radius θE (as seen from Earth)?
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The deflection angle θN is approximated for a hyperbolic trajectory (since photons are

unbound, E > 0) as:

θN ≈ 2

e
,

sin

(
θN
2

)
=
α

c
=

1

e
=⇒ θN ≈ 2

e

e =

√
1 +

2EL2

G2M2m2

L = mv⊥r = mcr

For a photon, the total energy (kinetic + potential) per unit mass is:

E

m
=
c2

2
− GM

r
=
c2r − 2GM

2r

a = −GM
2

· m
E

= −GM
2

· 2r

c2r − 2GM
=

GMr

2GM − c2r

Substituting L and a into the eccentricity formula:

e =

√
1− L2

GMm2a
=

√
1− 1

GMm2
·m2c2r2 · 2GM − c2r

GMr

=

√
1 +

c4r3 − 2c2r2GM

G2M2r
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≈
√

c4r2

G2M2
≈ c2r

GM

⇒ e ≈ c2r

GM

θN =
2

e
=⇒ θN ≈ 2GM

rc2
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Gravitational Lensing by Iran

1. Geometric Features of the Images

(a) By considering light as a particle (photon), derive the amount of deflection due to a

gravitational field. The value predicted by general relativity is twice that of the Newtonian

prediction.

(b) In the case where the lens and the source lie on the same straight line, show that the

image of the source becomes a ring. Derive the angular radius of this ring (Einstein

radius).

(c) Now assume the lens and source are not aligned. Let θ be the angular position of the

image and β the angular position of the source. Derive the Einstein radius in terms of

these parameters. Show that two images form.

(d) Define the magnification factor η as:

η =
θ

β

Derive this in the limit where δθ ≪ θ and δβ ≪ β.

2. Amplification and Brightness of the Source

(a) Derive a formula for the increase in source brightness as a function of β (angular separa-

tion).

(b) Express the apparent brightness of the source as a function of time.

(c) The apparent magnitude data of a star from photometry is given. The star is 50 kilo-

parsecs away and affected by lensing. The minimum angular distance from the lens is

0.5 milliarcseconds. If the lens (a black hole) is 35 kiloparsecs from Earth, estimate the

mass of the black hole.

(d) Estimate the velocity of the star using the data.

3. More General Cases

(a) Consider a galaxy undergoing lensing. Place a polar coordinate system such that the

angle measurement direction lies along the line connecting the source and the lens. Show:

θ4E = θ4 + θ2β2 − 2βθ3 cos γ

where θE is the Einstein radius.

(b) Assume the lens is at redshift z1 and the source is at redshift z2. Assuming a flat universe

and neglecting radiation, derive the lens equation in terms of z1 and z2.

(c) For extended source and lens objects, show that the lens equation becomes vectorial:

β⃗ = θ⃗ − α⃗

and that:

α⃗ =
DLS

DOS
α̂

(d) For a galaxy with circular symmetry and surface mass density σ, show that:

α̂ =
4πσ2

c2
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and derive:

β = θ

(
1− θE

θ

)
Also determine θE .

4. Applied Astrophysical Problem

(a) Consider a neutron star of mass M = 3.5M⊙ and density ρ = 9018 kg/m3. Observations

suggest the presence of a planet around it. Using gravitational lensing, design a method

to detect this planet.

(b) Assume the neutron star emits in two cones with vertex angle 30◦. Can the Hubble

Space Telescope resolve this planet? Given:

• Distance to the star: 50 kpc

• Wavelength: 9 nm

5. Bonus Question

(a) What is the probability of microlensing occurring for a given number of background

stars? Assume the stars are at fixed distances and microlensing happens when their

angular separation from the lens is less than θE . Estimate the order of magnitude of this

probability.
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5 IOAA 2023

Data Analysis 2: ‘Isolated black hole’

In 2022, two independent groups reported the discovery of an isolated black hole based on obser-

vations of the gravitational microlensing event OGLE-2011-BLG-0462. In this problem, we will

analyze data from the Hubble Space Telescope to reproduce their findings.

Gravitational microlensing occurs when the light of a distant star (the ‘source’) is bent and magnified

by the gravitational field of an intervening object (the ‘lens’). The characteristic angular scale of

gravitational microlensing events, called the angular Einstein radius θE , depends on the mass M

and distance DL from the Earth to the lens:

θE =

√
4GM (DS −DL)

c2DSDL
,

where DS is the distance to the source star. For typical microlensing events observed in the Milky

Way, the source stars are in the Galactic bulge, near the Galactic center, so DS ≈ 8 kpc.

(a) Calculate the angular Einstein radius in milliarcseconds (mas) for an example lens of 1M⊙
located at a distance of 1 kpc (2 points)

θE =

√
4GM

c2
Ds −Dℓ

DsDℓ
=

√
4GM

au · c2

(
au

Dℓ
− au

Ds

)
= 2.7 mas

The angular resolution of modern large (D ≈ 10 m) optical (λ = 550 nm) telescopes is

θ0 = 1.22λ/D ≈ 14 mas. Thus, θ0 ≫ θE , so the images created during microlensing events

cannot be resolved by these telescopes.

Suppose that at time t the lens and the source are separated by an angle θ ≡ u(t)θE on the sky.

Two images of the source are created on a line through the positions of the source and the lens, at

angular distances θ+ and θ− from the lens given by:

θ± =
1

2

(
u±

√
u2 + 4

)
θE .

Note. Remember earliar in this lecture we defined u =
θ

θE
and derived,

θ±
θ

=
1

2

(
1±

√
u2 + 4

u

)

So the equation provided in this question is nothing new!

These two images are magnified, relative to the unlensed brightness of the source. The absolute

magnification of the images is:

A± =
1

2

(
u2 + 2

u
√
u2 + 4

± 1

)
.
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The image below shows the geometry of the event. The position of the lens is marked as L, the

unlensed position of the source is marked as S, while A+ and A− mark the positions of the two

images of the source. The dashed circle has a radius of one Einstein radius.

(b) Current telescopes cannot normally resolve this pair of images, but only measure the position

of the image centroid, i.e. the brightness-weighted mean of the positions of the two images.

Derive an expression for the angular separation θc of the image centroid relative to the lens

as a function of u and θE . (8 points)

θc =
θ+A+ + θ−A−
A+ +A−

=

1
4

(
u+

√
u2 + 4

)(
u2+2

u
√
u2+4

+ 1
)
+ 1

4

(
u−

√
u2 + 4

)(
u2+2

u
√
u2+4

− 1
)

u2 + 2

u
√
u2 + 4

θE

=

(
u+

√
u2 + 4

)(
u2 + 2 + u

√
u2 + 4

)
+
(
u−

√
u2 + 4

)(
u2 + 2− u

√
u2 + 4

)
4(u2 + 2)

θE

=
2u(u2 + 2) + 2u(u2 + 4)

4(u2 + 2)
θE

=
2u(2u2 + 6)

4(u2 + 2)
θE

=
u(u2 + 3)

u2 + 2
θE

(c) Derive an expression for the source deflection ∆θ, i.e. the difference between the location of

the centroid and the unlensed position of the source, as a function of u and θE . What is the

source deflection when the lens and the source are nearly perfectly aligned (u ≈ 0)? (4

points)
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∆θ = θc − θ =
u(u2 + 3)

u2 + 2
θE − uθE =

u(u2 + 3)− u(u2 + 2)

u2 + 2
θE =

u

u2 + 2
θE

∆θ(u = 0) = 0

so there is no deflection when the lens and the source are nearly perfectly aligned.

The source and lens are moving relative to each other in the sky. Thus, both the total magnification

of the images and the position of the centroid changes with time, resulting in observable photometric

and astrometric microlensing effects. For now, we assume that the source-lens relative motion is

rectilinear.

The plot below shows the light curve of the gravitational microlensing event OGLE-2011-BLG-0462,

discovered by the OGLE sky survey led by astronomers from the University of Warsaw. The solid

line shows the best-fitting light curve model. The Einstein timescale of the event, i.e. the time

needed for the source to move by one angular Einstein radius relative to the lens, was tE = 247

days. The event peaked on 21 July 2011 (HJD = 2455763). The minimal separation between the

lens and the source was u0 ≈ 0.

(d) Plot the measured positions of the source star against the background objects in the East and

North directions as a function of time.

(e) The observed motion of the source star is the sum of two effects: rectilinear proper motion of

the source and astrometric microlensing effects. Calculate the proper motion (in mas/year)

of the source and its uncertainty in the East and North directions.

I will use the fact that the first epoch of astrometric observations was taken close to

the peak of the light curve (that is, u1 ≈ 0, that is, almost no astrometric deflection).

Similarly, astrometric deflection is close to zero for the last epoch. Thus,

µE =
xE,8 − xE,1

t8 − t1
= −2.247± 0.029 mas/yr

µN =
xN,8 − xN,1

t8 − t1
= −3.674± 0.038 mas/yr
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5.1 Microlensing DA

The OGLE (Optical Gravitational Lensing Experiment) is considered one of Polish astronomy’s

greatest contributions to the scientific community. Its main objective is the study of gravitational

microlensing, which are astronomical events in which light from a background source is deflected

and amplified by the gravity of a massive object in front of it. In this issue, we will provide a

simplified analysis of one of the project’s research branches: the detection, through the microlensing

effect, of objects whose emission is insufficient for direct observation. Its task is to find the object’s

mass.

Formulas: During a microlensing event, the source flux shows a transient increase given by:

F ′
f

Ff
= A =

u2 + 2

u ·
√
u2 + 4

,

where F ′
f is the background source flux amplified by microlensing, Ff is the original flux from the

same source, A is called the magnification, and u is defined as:

u =
θ

θE

where θ is the angular distance between the bodies, and θE is the Einstein radius, which is defined

as:

θE =
4GM

a · c2
· πE

where M is the mass of the body that causes the microlensing, a is the semi-major axis of Earth’s

orbit, and πE is a dimensionless parameter characteristic of the observer-lens-source system, provided

below. When using this equation, θE is found in radians.

The amplitude of the microlens parallax vector πE is the ratio of the lens-source relative

parallax πrel to the angular Einstein radius θE , while its direction is set by the lens-source

relative proper motion µ,

πE =
πrel
θE

µ

µ

The numerator of the first ratio quantifies the apparent angular lens-source displacement as the

observer changes position, while the denominator translates this Angular scale into the scale

of microlensing phenomena. The second term appears because the evolution of microlensing

effects due to parallax depends on the direction of lens-source relative motion.

Given:

• Proper motion between the bodies: µ = 4.250mas/year

• πE = 0.0894

• Universal gravitational constant: G = 6.67 · 10−11N ·m2 · kg−2

• Solar mass: M⊙ = 1.99 · 1030 kg
• Semi-major axis of Earth’s orbit: a = 1.50 · 1011m
• Speed of light in vacuum: c = 3.00 · 108m/s

• A table with photometric measurements of a background object is provided at the end of the

question.
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a. Let u0 be the value of u at closest approach. Show that, for u≪ 1:

1

A2
≈ µ2

θ2E
·∆t2 + u20

b. (10 points) Make a table of 1/A2 versus ∆t2.

c. (20 points) Plot the graph of 1/A2 versus ∆t2 using the values from the table. Draw the

line that best fits the points.

d. (16 points) Determine the coefficients of the linear fit, as well as their uncertainties.

e. (8 points) From the coefficients of the linear fit, determine the mass of the massive object,

along with its uncertainty.

f. (2 points) No detectable light emission was observed coming from the massive object. Con-

sidering this fact and your answer to the previous item, conclude what type of celestial body

caused the gravitational microlensing.

g. (20 points) It is still necessary to study the uncertainty arising from our approximation.

Estimate the maximum value of u such that 1/A2 carries an error less than 1% when calculated

using the approximation from the first item. From this, estimate the maximum value of |∆t|
for the same condition.

Hint: Consider that the error comes mainly from the approximation of 1/A2 as a function of

u, i.e., neglect the error when finding u in terms of other parameters.

Point-Source-Point-Lens (PSPL) Model

Proper Motion in this context can be defined as,

µE =
θE
tE

where θE is the Einstein angle and tE is the Einstein crossing time. Although most lenses have

negligibly low proper motion, a sufficiently high value of proper motion enables calculation of

the relative proper motion for the lens and the source, ultimately a direct measurement of the

lens flux.

u(t) =

√
u20 +

(
t− t0
tE

)2

At the time of a lensing event t0, the distance of closest approach u0 gives the peak

magnification, and tE describes the source traversal time over the Einstein radius.

https://www.microlensing-source.org/concept/point-lenses/

https://www.microlensing-source.org/concept/point-lenses/
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Magnification (A) ∆t (days)

362.4 0.168

361.1 0.171

358.8 0.184

358.1 0.194

357.4 0.199

355.5 0.205

355.5 0.213

350.3 0.222

348.5 0.229

348.3 0.236

343.9 0.243

342.3 0.256

341.7 0.262

342.0 0.270

342.3 0.278

333.3 0.284

335.7 0.308

335.4 0.318

331.4 0.331

329.0 0.347

325.4 0.358

325.1 0.370

323.0 0.383

321.2 0.398

312.8 0.418

Table 1: Relationship between the time interval ∆t elapsed since the maximum approximation

between the bodies and the magnification A. Data adapted from the OGLE project.
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a. The angle θ can be expressed using the Pythagorean relation:

θ2 = µ2 ·∆t2 + θ20

u2 =
µ2

θ2E
·∆t2 + u20

As u≪ 1:

A =
u2 + 2

u ·
√
u2 + 4

A =
2 · (1 + u2/2)

u · 2 ·
√
1 + u2/4

A =
1

u
· 1 + u2/2√

1 + u2/4

1

A
=

√
1 + u2/4

1 + u2/2

1

A2
= u2 · 1 + u2/4

(1 + u2/2)2

We can approximate:

1

A2
≈ u2

1

A2
≈ θ2

θ2E
1

A2
≈ µ2

θ2E
·∆t2 + u20

b. The requested table is shown below:

1

A2
× 10−6 ∆t2 × 10−2 (days2)

7.61 2.82

7.67 2.92

7.77 3.39

7.80 3.76

7.83 3.96

7.91 4.02

7.91 4.54

8.15 4.93

8.36 5.24

8.24 5.57

8.46 5.90

8.53 6.55

8.56 6.86

8.55 7.29

8.53 7.73

9.00 8.07

8.87 9.49

8.89 10.1

9.11 11.0

9.24 12.0

9.44 12.8

9.46 13.7

9.59 14.7

9.69 15.8

10.2 17.5

c. The graph is shown next to the best-fit line. The image also shows two lines that delimit

the limits considered for the best-fit line to the points:
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d. Let N be the number of samples (in this case N = 25). We can perform linear regression

of the form y = A′ +B′ · x. First, calculate the auxiliary variable:

∆ = N ·
∑

x2 − (
∑

x)2 = 1.14 days4

Thus:

A′ =

∑
x2 ·

∑
y −

∑
xy ·

∑
x

∆
= 7.31 · 10−6

B′ =
N ·

∑
xy −

∑
x ·
∑
y

∆
= 1.62 · 10−5 days−2

To calculate the associated error, we compute the auxiliary variable σy:

σy =

√
1

N − 2
·
∑

(y −A−B · x)2 = 1.4 · 10−7

σA′ = σy ·
√∑

x2

∆
= 6 · 10−8

σB′ = σy ·
√
N

∆
= 7 · 10−7 days−2

e. By the equation of the line:

µ2

θ2E
= B′

θE = µ · 1√
B′

4GM

a · c2 · πE
= µ · 1√

B′

M =
µ · a · c2

4G · πE
· 1√

B′

M = 3.96 ·M⊙

σM
M

=

∣∣∣∣12 · σB
′

B′

∣∣∣∣
σM = 0.08 ·M⊙

f. The mass of the object rules out alternatives such as neutron stars, white dwarfs, brown

dwarfs, rogue planets, and almost all types of bodies whose emission is usually too faint

to be detected. The only option is that the object is a black hole.

g. As we saw earlier:
1

A2
= u2 · 1 + u2/4

(1 + u2/2)2

The percent error can be approximated as:

ε ≈
∣∣∣∣ 1 + u2/4

(1 + u2/2)2
− 1

∣∣∣∣
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ε ≈
∣∣∣∣1 + u2/4− (1 + u2/2)2

(1 + u2/2)2

∣∣∣∣
ε ≈

∣∣∣∣1 + u2/4− 1− u2 − u4/4

(1 + u2/2)2

∣∣∣∣
ε ≈

∣∣∣∣−3u2/4 · (1 + u2/3)

(1 + u2/2)2

∣∣∣∣
Since the terms in u2 are much smaller than 1:

ε ≈
∣∣∣∣−3

4
· u2
∣∣∣∣

ε ≈ 3

4
· u2

Substituting ε = 0.01:

umax = 0.11

Our estimate for the mass is:

M = 3.96 ·M⊙

4GM

a · c2
· πE =

4G · 0.65 ·M⊙
a · c2

· πE

θE = 1.41 · 10−8 rad

θE = 2.9mas

We know that:

θ = u · θE
θ < umax · θE

To ensure that the angle θ always allows the approximation:

θ < 0.32mas

The impact parameter u0 can be calculated as:

Which is negligible compared to umax. Therefore, we can approximate:

µ · |∆tmax| ≈ θmax

|∆tmax| ≈ 27 days
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6 Lensing Research Notes [Advanced]

6.1 Basics of Light Deflection

Einstein’s general theory of relativity predicts that a mass M can bend light. The deflection angle,

α, of a light ray passing near a point mass M is given by:

α =
4GM

c2
1

b
,

where b is the impact parameter (the closest approach of the light ray to the lens mass).

6.2 Lens Equation

Gravitational lensing is described by the lens equation, which relates the angular position of the

source (β⃗) to the observed angular position of the image (θ⃗):

β⃗ = θ⃗ − α⃗(θ⃗),

where:

• β⃗: True angular position of the source,

• θ⃗: Observed angular position of the lensed image,

• α⃗(θ⃗): Deflection angle at θ⃗.

For an extended mass distribution, the deflection angle is proportional to the surface mass density

(Σ) of the lens, integrated over the lens plane.

6.3 Physical Quantities and Key Equations

1. Deflection Angle (α⃗):

α⃗ = ∇ψ(θ⃗),

where the gradient is taken with respect to the angular coordinates in the lens plane.

2. Convergence (κ)

The convergence quantifies how much the mass distribution focuses light. It is directly related

to the second derivative of the gravitational lensing potential:

κ(θ⃗) =
1

2
∇2ψ(θ⃗),

where:

• κ(θ⃗): Convergence at angular position θ⃗,

• ψ(θ⃗): Gravitational lensing potential,

• ∇2: Laplacian operator, which is taken with respect to the angular coordinates in the

lens plane.

3. Surface Mass Density (Σ) and Convergence (κ):

κ(θ⃗) =
Σ(θ⃗)

Σcrit
,
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where Σcrit is the critical surface density given by:

Σcrit =
c2

4πG

Ds

DlDls
.

where:

• c: Speed of light,

• G: Gravitational constant,

• Ds: Angular diameter distance to the source,

• Dl: Angular diameter distance to the lens,

• Dls: Angular diameter distance between the lens and the source.

4. Shear (γ)

The gravitational shear describes distortions (stretching or compressing) of lensed images. It

is derived from the second derivatives of the gravitational lensing potential:

γ1 =
1

2

(
∂2ψ

∂x2
− ∂2ψ

∂y2

)
, γ2 =

∂2ψ

∂x∂y
.

Here:

• γ1: Shear component along the x- and y-axes,

• γ2: Shear component related to cross terms between x and y,

• ψ: Gravitational lensing potential.

The total shear is given by:

γ =
√
γ21 + γ22 .

6.4 Derivation of Critical Surface Density

The critical surface density (Σcrit) is the surface mass density required to produce strong lensing

effects. It is defined as the mass per unit area in the lens plane that causes the formation of multiple

images. The relation between Σcrit and the Einstein radius arises from the fact that the total mass

inside the Einstein radius corresponds to the lens’ effective mass:

M =

∫ θE

0
Σ dA,

where dA is the area element in the lens plane. For distant objects, a lens is likely to be complex,

as in the mass distribution of a galaxy. Since we are using a thin lens approximation, the lens’ 3-D

mass distribution is irrelevant: what’s important is the 2-D mass surface density (mass/area), Σ

M(ξ⃗) = 2π

∫ ξ

0
Σ(ξ′)ξ′dξ′

Now consider that the relation between β and θ is

β = θ − DLS

DS ·DL

4GML

c2θ
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where ξ = DSθ. For simplicity, suppose we are dealing with a constant surface density lens, i.e.,

M = πξ2Σ. The observed deflection angle will be

θ − β =

(
DSL

DL ·DS
· 4πGξ

2Σ

c2

)
1

θ

=

(
DSL

DL ·DS
·
4πGD2

Sθ
2Σ

c2

)
1

θ

=

(
DL ·DLS

DS
· 4πGΣ

c2

)
θ

Now suppose β = 0. For the above equation to be true, From geometric considerations and

substituting the Einstein radius formula, the critical surface density is derived as:

Σcrit =
c2

4πG

DS

DLDLS
,

where:

• c2/G: Combines the relativistic and gravitational effects,

• DS/(DLDLS): Accounts for the lens-source geometry.

Note than when one observes an Einstein ring-like object, the mass inside the ring

M(θ) ≈ π (DSθ)
2Σcrit

Key Intuitions

1. Physical Meaning: Σcrit is the threshold surface density for lensing to produce strong effects,

such as multiple images or arcs. If Σ > Σcrit, strong lensing occurs. Otherwise, only weak

distortions are observed.

2. Dependency on Geometry: The critical density depends on the angular diameter distances,

meaning the configuration of the lens, source, and observer plays a crucial role in determining

the strength of the lensing effect.

3. Units: Σcrit has units of surface density, such as M⊙/pc
2.

This derivation is essential for calculating lensing effects and understanding the lensing strength of

a mass distribution.

Gravitational Lensing Potential and Critical Surface Density

The gravitational lensing potential is a scalar potential used to describe the bending of light

in the presence of a gravitational field caused by a massive object (e.g., a galaxy, cluster, or black

hole). This potential is fundamental in modeling gravitational lensing phenomena and allows us to

calculate image distortions, magnifications, and deflections.

6.5 Definition of the Gravitational Lensing Potential

The lensing potential, ψ, is a two-dimensional scalar field defined in the lens plane. It encapsulates

the effect of the gravitational field of the lensing mass on the trajectory of light. The potential is

given by:
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ψ(θ⃗) =
1

π

∫
κ(θ⃗′) ln |θ⃗ − θ⃗′| d2θ′,

where:

• θ⃗: Angular position of the light ray in the lens plane,

• κ(θ⃗′): Dimensionless surface mass density (convergence) at position θ⃗′,

• ln |θ⃗ − θ⃗′|: Logarithmic kernel representing the influence of mass at θ⃗′ on θ⃗,

• d2θ′: Element of area in the lens plane.

6.6 Significance of the Lensing Potential

The gravitational lensing potential is crucial in determining several key lensing quantities:

• Deflection Angle (α⃗):

α⃗(θ⃗) = ∇ψ(θ⃗).

This describes the change in direction of light due to the gravitational field.

• Convergence (κ) and Shear (γ):

κ =
1

2
∇2ψ,

γ1 =
1

2

(
∂2ψ

∂x2
− ∂2ψ

∂y2

)
,

γ2 =
∂2ψ

∂x∂y
.

Convergence describes isotropic magnification, while shear describes image distortion.

• Magnification (µ):

µ =
1

(1− κ)2 − γ2
.

This measures the amplification or de-amplification of light due to the lens.

6.7 Applications in Astronomy

The gravitational lensing potential allows astronomers to:

1. Map the distribution of dark matter in galaxy clusters using strong and weak lensing,

2. Measure cosmological parameters such as the Hubble constant (H0) through time delays in

multiple images,

3. Study the properties of distant galaxies magnified by the gravitational lensing effect.
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